
Regularization for Neural Networks

L. Graesser

July 31, 2016

Research into regularization techniques is motivated by the tendency of neural networks to to
learn the specifics of the dataset it was trained on rather than learning general features that are
applicable to unseen data. This is known as overfitting. The goal of any supervised machine learn-
ing task is to approximate a function that maps inputs to outputs, given a dataset of examples and
labels. An important assumption is that models are trained on datasets which are representative
of the true distribution of the data and the target function to be approximated. However, almost
all data is noisy and contains some random deviations from the true distribution. Given this fact,
approximating the function represented by the training data very precisely is undesirable. The
algorithm will learn the noise in the training dataset and will be unlikely to perform well when
applied to unseen data. Regularizing neural networks helps them to learn the true function and
ignore the noise.

Neural networks are high capacity models capable of approximating very complex functions, so
are particularly susceptible to overfitting. Training a neural network by programming it to minimize
a loss function, a measure of how well a network matches training data labels, is the unavoidable
source of the overfitting problem in supervised learning tasks. In order to make the value of the
loss as small as possible, the network matches the training data as closely as possible. However,
this is not actually the right measure of a network’s performace, only a substitute. The real goal
is to accurately label unseen data. Since it is impossible to train a neural network using the real
goal, it is trained it using this substitute and designed in such a way so as to increase the chances
that it performs well on the real task. How effective this is in practice depends on the capacity of
the neural network (i.e. whether the architecture of the network can actually approximate the true
function), how much training data there is and how representative it is of the true distribution of
the data, how noisy the training data is, and whether the neural network chooses the right function
to approximate. This suggests three mechanisms to improve neural network performance.

1. Increase the complexity of the neural network by adding more layers and / or more nodes
per layer. This expands the family of functions that a specific network can approximate,
increasing the likelihood that the true function that maps inputs to outputs is included in
this family.

2. Get more and better data, giving the network more information about the true function.

3. Regularize the model to make it more likely that the network approximates the true function
out of the family of functions that it is capable of approximating.

1

2

They are all related. The first point suggest that more complex networks are better since they
are more likely to be able to approximate the true function. However it also increases the likelihood
that the network will learn the wrong function, one that better approximates the training data.
An alternative approach is to lower the complexity of the model, reducing the extent to which a
network can overfit the data. However, unless the prediction problem is very well understood, this
is likely to result in a model that cannot approximate the true function well and will lead to poor
performance on both the training data and unseen data. A better approach is to do all three of
the above. Design high capacity networks, invest in getting more and better data, and regularize
them, to help the network approximate the true function and prevent overfitting.

The three most common forms of regularization are:

• Weight penalties

• Early Stopping

• Dropout

All of these have been shown to work well in practice, in particularly dropout. Interestingly,
why they do is not well understood mathematically. Instead, progress has been made through the
development of hypotheses as to what may work well, guided by experience, and supported with
experimental evidence. The custom within the deep learning community of making results and
publications freely available, as well as the availability of standardized datasets such as the Ima-
geNet datasets, has likely helped speed up the spread and development of different regularization
techniques.

Weight penalties add an additional element to the loss function, the size of which is related
to the absolute size of all of the weights in a neural network. A parameter, λ, controls how high
a penalty to impose since it is multiplied by the weight penalty. The larger λ is, the higher the
penalty, and λ = 0 corresponds to no weight penalty at all. λ is not a learnt parameter, it is chosen
by the network designer, typically through hyper-parameter tuning.

The effect of weight penalties is to reduce the size of the weights in the network on average, since
large weights will result in a higher loss. If a neural network has no weight penalties then weights
tend to be pushed away from zero to more extreme values, even if this results in only a marginal
decrease in the loss. Consider the case where the output of a network is a probability distribution
over the possible categories achieved by having the softmax activation function in the nodes of the
last layer. The output values are ∈ (0, 1) but the labels are 1 for the correct category, and 0 for
all of the others. The network will never output a 1 but may continue to adjust the weights to
more extreme values in order to push to output of the network closer and closer to 1s and 0s. But
once a network is 99% or even 99.9% sure that an example belongs to a particular category there
is little benefit to it becoming more sure, and instead increases the risk of overfitting the training
data. This is because a large weight has the effect of making the output of the network sensitive
to small changes in the feature that it corresponds to because changes in this feature are amplified
by being multiplied by a large weight. Small changes in the value of this input feature can lead
to large changes in the output. In theory this could be correct, but a more likely outcome is that
the network is fitting noise in the data. One heuristic guiding the weight penalty approach is that

3

neural networks should be relatively locally insensitive, i.e. inputs from similar local regions should
produce similar outputs. Small changes in the input should not result in large changes in the output.

The weight penalty increases the hurdle for large weights. The larger the value of the λ pa-
rameter, the larger the hurdle. It will cause weights to be small except for those which have a
significant effect on reducing the loss by improving the output of the network. Enough to offset the
increase in the loss due to regularization. A large weight can be interpreted as a particular feature
being important for predicting the correct output. Constraining the set of large weights to those
which have a significant effect on the loss function increases the likelihood that features with large
weights are generally important. That is, the important features learned by the model are part of
the true function we want it to approximate.

Two forms of weights regularization are used most often, L2 and L1. The difference is how
the weights are penalized in the loss function. Let C be any loss function used to train a neural
network. Let Ci be the loss for one example. The equations below give the modification to the loss
function for L2 and L1 weight penalties, computed across n examples

L2 : C =
1

n

(n∑
i=1

Ci +
λ

2

∑
w∈W

wTw

)

L1 : C =
1

n

(n∑
i=1

Ci + λ
∑
w∈W

|w|
) (1)

L2 :
∂C

∂w
= λw (regularization component of the loss function only)

L1 :
∂C

∂w
= λ sign(w) (regularization component of the loss function only)

(2)

For L2 regularization, the derivative of the regularization component of the loss function with
respect to a weight matrix, w, is λw. So, the contribution from L2 regularization to the weight
update depends on the current value of the weights. For L1 regularization, the derivative of the
regularization component of the loss function with respect to a weight matrix, w, is λsign(w), where
sign(w) is a matrix of the same size as w in which each element is the sign of the corresponding
element of w. The contribution from L1 regularization during the weight update step is therefore
proportional to λ and independent of the current value of w. This has the effect of shrinking w
towards 0, taking λ sized steps. In contrast, L2 shrinks w towards 0 in λw sized steps. The closer
w is to 0 the smaller the update with L2 regularization. This is not the case for L1 regularization.
The result is that whilst weights are typically small with L2 regularization, they do not tend to be
0. In contrast, L1 regularization tends to enforce sparsity on the model, making many weights 0.
So only a few nodes (features) are active and contribute to mapping inputs to outputs. Which to
choose is application dependent.

Early stopping is a very intuitive technique. It has a regularizing effect by stopping the training
process before the model learns specifics of the training data. While the model is learning it is typ-
ical to see the error (percentage of incorrectly classified examples) fall at the beginning for both the

4

training and test set. As the number of iterations increases, the training set error should continue
to fall, at a decreasing rate and eventually plateau. However the test set error may plateau and
then begin to increase, as shown in the figure below. This is a sign that the model has started to
overfit the training data.

Figure 1: Training vs. test error

Training a neural network until the test error starts to increase and then returning to the model
which generated the minimum error would be the most thorough way to implement early stopping.
However, it is often too expensive to keep track of the network’s weights for every iteration. Instead,
a common approach is to monitor both the training and test error and stop training once the test
error hasn’t decreased for a few epochs, 10 for example.

Another approach to regularization is to use an ensemble (collection) of models to make the
final prediction. The intuition behind this approach is that a number of models with the same
accuracy may make different errors. Making the final prediction by selecting the class that the
majority of models predict to be the correct one will decrease the error rate of the overall result
and the performance of the model on both the training and the test set will increase. A similar
idea is application to regularization. Different models with the same ability to generalize may learn
different specific features of the training data. Taking the majority vote of these models smooths
out the noise. The key is to try to build models that make errors or learn training data noise that
are independent from each other. And to do this in a computationally efficient manner.

Dropout is an ingenious technique for building an ensemble of independent neural networks

5

with the same data and network architecture in a computationally efficient way. Each time a batch
is processed during stochastic gradient descent, each node in the hidden layers is turned off (output
0) with some positive probability, p, typically 50%. This has the effect of randomly generating a
subnetwork from the main neural network. It is with this subnetwork that the feedforward, back-
propagation and weight update steps are made. With each batch a new subnetwork is generated
and therefore a different subset of the total available features are used to make a prediction. Once
the model has been trained, the probability of a node being turned on needs to be reset to 1 and
the weights multiplied by p before it is used on test data. The multiplication by p turns out to be a
good approximation of the expected value of the output of a unit over all the possible subnetworks
and is known as the weight scaling inference rule1. This is the mechanism by which the majority
vote is computed. The result is equivalent to averaging the output of a very large number of neural
networks which have been trained on the same data.

During training each hidden node cannot rely on a particular input being present. So when a
node is detecting a feature the network must learn to be able to do this in a number of different
ways. This could be by replicating feature detection. For example, if a node detects the presence
of a face by identifying if a nose is present, then the previous layer may have multiple features
for detecting noses, making the face detection feature robust to any one of the nose features being
turned off. Alternatively, a node may learn to detect a face by identifying if one or more of an eye,
mouth, or nose is present. Making the network robust to any one of the nose, mouth or eye detec-
tors in the layer below being turned off. Understood this way, dropout has the effect of preventing
nodes from overly relying on any one of its inputs to detect the presence of a feature. It can also
be thought of as producing nodes that detect features that are not just good in one context, but
instead are good features in multiple contexts2. This is exactly the goal of regularization.

A significant advantage of this approach is that it is efficient. Because parameters between these
networks are shared by virtue of them being part of the parent network, it is possible to represent
an exponential number of neural networks in a feasible amount of memory3. It is also through
parameter sharing that good values for the weights and biases are reached despite the fact that
only one subnetwork is being trained at each step. Computationally it only takes twice as many
operations to make the feedforward, backpropagation and weight update steps as a network of the
same size without dropout. The two networks are of the same order of algorithmic complexity and
the multiplier for the additional steps of a network with dropout is small. This is partially offset by
the need to increase the size of the network so that the average subnetwork has the same capacity
as a network without dropout. For example, if p = 50% the number of nodes in the network needs
to be doubled. Overall however, the efficiency gains are significant.

Many other forms of regularization are available to a network designer. Below I list just a few.
If you are interested in learning more about regularization then I recommend reading chapter 7 of

1Deep Learning; Goodfellow, Bengio, Courville; ch 7, page 263, http://www.deeplearningbook.org/contents/
regularization.html

2Deep Learning; Goodfellow, Bengio, Courville; ch 7, page 267, http://www.deeplearningbook.org/contents/
regularization.html

3Deep Learning; Goodfellow, Bengio, Courville; ch 7, page 259, http://www.deeplearningbook.org/contents/
regularization.html

http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html

6

Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville4

• Dataset augmentation: The dataset is expanded by applying small transformations to the
training data that mimic variations that are likely to be encountered in unseen data and are
unlikely to change the class of the example. This has the effect of making the network robust
to these types of transformations in the data. For images it is quite easy to imagine what
they could be. For example, shifting all pixels left, right, up or down by 1, changing the
color saturation, rotation by a degree or two, and making multiple crops of the image. Large
rotations however are not appropriate. Consider an image of the digit 9. A large rotation
may change this into a 6.

• Parameter sharing: Parameters are shared across parts of the network (between groups of
nodes). A widely used and extremely effective example of this is a convolutional neural
network. This family of networks makes use of layers which contain small feature maps,
perhaps 5 × 5 pixels wide. These feature maps are slid across the whole image. The 25
weights of the feature map are shared by a set of nodes in the layer above which computes
the extent to which one feature appears in a particular patch on an image. The result is a set
of weights that are associated with recognizing one feature, and they do so across the whole
image. This makes them robust to small variations in the appearance and location of that
feature, and less likely to overfit.

• Adversarial training: Images are generated which caused the network to make incorrect pre-
dictions with high confidence. These images are then used to tune the network weights to
prevent it from making similar errors. This makes the network more robust to small per-
mutations in the data within the parameter space region of a particular class5. However,
Nguyen, Yosinski, and Clune6, showed that it is difficult to make neural networks robust to
all adversarial images.

Regularization refers to a set of techniques applied to neural networks to prevent them from
overfitting the training dataset. They are an essential part of any network designer’s toolkit. Often
techniques are combined to good effect. A common strategy is to use early stopping, augment
data sets where possible, and apply dropout to fully connected layers. Convolutional layers do not
need any additional regularization since they are self regularizing. Empirically, dropout seems to
have replaced weight penalties for fully connected layers. Dropout is a little trickier to apply to
recurrent neural networks since dropout on recurrent connections can make it difficult for networks
to learn to to store information. However, Zaremba, Sutskever, and Vinyals7, showed that dropout
applied to only the non recurrent connections in an LTSM network has an effective regularizing
effect whilst still allowing the network to learn.

I hope that you’ve enjoyed this post and found it useful. If you have any feedback please send
me an email at contact@learningmachinelearning.org

4http://www.deeplearningbook.org/contents/regularization.html
5Deep Learning; Goodfellow, Bengio, Courville; ch 7, page 269, http://www.deeplearningbook.org/contents/

regularization.html
6Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, https://

arxiv.org/pdf/1412.1897.pdf
7Recurrent Neural Network Regularization, Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, 2015, https:

//arxiv.org/pdf/1409.2329.pdf

http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html
http://www.deeplearningbook.org/contents/regularization.html
https://arxiv.org/pdf/1412.1897.pdf
https://arxiv.org/pdf/1412.1897.pdf
https://arxiv.org/pdf/1409.2329.pdf
https://arxiv.org/pdf/1409.2329.pdf

